

Exercise 8

An exothermic homogeneous first-order liquid-phase chemical reaction was studied in a straight, circular mono-channel microreactor.

The reaction could be run quasi-isothermally using 80% w/w of solvent.

Data

$$\text{Flowrate } \dot{Q} = 1.5 \cdot 10^{-7} \text{ m}^3 \text{ s}^{-1}$$

$$\text{Molecular weight of reactant A } MW = 0.21 \text{ kg mol}^{-1}$$

Kinetics

$$r = k c_A (\text{mol} \cdot \text{m}^{-3} \cdot \text{s}^{-1}) \quad k = 50 \text{ s}^{-1}$$

Reactor dimensions

$$\text{Diameter } D = 2 \cdot 10^{-4} \text{ m}$$

$$\text{Length } L = 0.1 \text{ m}$$

Fluid properties (assume independent of concentration)

$$\text{Density } \rho = 900 \text{ kg m}^{-3}$$

$$\text{Viscosity } \mu = 1.2 \cdot 10^{-3} \text{ Pa} \cdot \text{s}$$

$$\text{Heat capacity } c_p = 2200 \text{ J kg}^{-1} \text{ K}^{-1}$$

$$\text{Heat conductivity } \lambda = 0.2 \text{ W m}^{-1} \text{ K}^{-1}$$

$$\text{Nusselt number } Nu = 3.66 \text{ (valid in laminar regime)}$$

Questions

Design a reactor capable of processing (same conversion) quasi-isothermally the same molar flowrate of the reactant using only 40% w/w of solvent in the feed.

1. Propose a mono-channel design
2. Propose a multichannel design to maintain the pressure drop equal or smaller than in the first study. Pressure drop for circular channel in laminar regime $\Delta p = L \frac{32 \mu u_m}{D^2}$

Answers

$$\text{First order reaction } \rightarrow X = 1 - \exp\left(-\frac{\tau}{t_{hom}}\right) ; t_{hom} = \frac{1}{k c_0^{n-1}} = \frac{1}{k} \neq f(c_0) \rightarrow \tau = \text{constant}$$

Solvent mass fraction decreases from 80% to 40% \rightarrow increase in $c_{A,0}$ by a factor of 3

\rightarrow Volumetric flowrate \dot{Q} will decrease by a factor of 3 ($\dot{n}_{A,0} = \dot{Q} \cdot c_0 = \text{constant}$)

\rightarrow Reactor volume will decrease by a factor of 3 since $\tau = \frac{V}{\dot{Q}} = \text{constant}$

Characteristic time for heat transfer $t_{heat} = \frac{\rho c_p R^2}{\lambda Nu}$ must decrease by a factor of 3 since the same amount of heat is released in a 3 times smaller volume $\rightarrow D_2 = \frac{D_1}{\sqrt{3}}$ and $L_2 D_2^2 = \frac{1}{3} L_1 D_1^2 \rightarrow L_1 = L_2$

Pressure drop $\Delta p = L \frac{32 \mu u_m}{D^2}$ will increase by a factor of $\frac{L_2}{L_1} \left(\frac{D_1}{D_2} \right)^2 = 3$

$(u_m \propto \frac{Q}{D^2}$ is constant since $\frac{Q_1}{Q_2} = \left(\frac{D_2}{D_1} \right)^2 = 3)$

Second design proposed: use two channels with same diameter as case above but with length divided by two (thus keeping the same total volume) \rightarrow velocity divided by two in each channel and length divided by two \rightarrow pressure drop divided by four, i.e., $\frac{1}{4}$ only of initial value during the study.

n	1	
k_hom	5.00E+01	s-1
MW	0.2	kg/mol
ro	900	kg/m^3
Nu	3.66	
cp	2200	J kg-1 K-1
lambda	0.2	W m-1 K-1
mu	1.20E-03	Pa*s

		R1	R2	R3
F	m^3/s	1.50E-07	5.00E-08	5.00E-08
Solvent mass frac	kg/kg	80%	40%	40%
Reactant mass frac	kg/kg	20%	60%	60%
CO	mol/m^3	900	2700	2700
Mol flow rate reactant	mol/s	1.35E-04	1.35E-04	1.35E-04
Lc	m	1.00E-01	1.00E-01	5.00E-02
Dc	m	2.00E-04	1.15E-04	1.15E-04
Ac	m^2	6.28E-05	3.63E-05	1.81E-05
Sc	m^2	3.14E-08	1.05E-08	1.05E-08
Nc	-	1	1	2
Vc	m^3	3.14E-09	1.05E-09	5.24E-10
Vreac	m^3	3.14E-09	1.05E-09	1.05E-09
dh	m	2.00E-04	1.15E-04	1.15E-04
Ac/Vc	m-1	2.0E+04	3.5E+04	3.5E+04
u	m/s	4.8E+00	4.8E+00	2.4E+00
h=U	W m-2 K-1	3660	6339	6339
t_hom	s	0.02	0.02	0.02
t_heat	s	0.11	0.04	0.04
Tau	s	0.021	0.021	0.021
Da	-	1.05	1.05	1.05
NTU	-	0.77	2.32	2.32
X		65%	65%	65%
UA		2.3E-01	2.3E-01	2.3E-01
Re		716	413	207
Dp	bar	4.58	13.75	3.44